
Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 1 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp

1 General

1.1 Revisions

1.2 Abbreviations/Definitions

byte - 8 data bits (= one octet)
D_Iface - The interface used with this protocol.
D_Unit - Any unit being connected to, and supervised and/or controlled by the

D_Iface.
D_UnitObj - Any D_Unit internal object, which is being supervised and/or

controlled via the here described protocol. Examples are: push-buttons,
LEDs, IDstring and measured/controlled numerical parameters.

D_UnitAdr - The physical address of a D_Unit. Its value may be fix, depend-
ing on subrack PIU slot or reconfigurable. Product documentation for the
D_Unit must describe this.

1.3 Supported Interconnection Structures

The protocol is intended for a mainly (though not only) master/slave oriented
communication. The connection between units is either point to point (Gateway
to Star Controller) or a chain connection of units (Chain Controllers), each having
two D_Iface interfaces.

1.4 General Features

The protocol has the following characteristic properties:
- Compressed Self Expanding header. This allows the protocol to be flexible

for various applications and yet efficient. Most fields of the header are min-
imum three bits, but expand automatically as their values so require. The
minimum header overhead is 5 bytes.

- Use of general standardised objects, D_UnitObj (see definition above).
These objects define what types of requests and responses that are valid and
the formats of associated data of the message, if any. The objects are gener-
alised to serve more than one purpose. The idea of this concept is to reduce
product documentation (by reference to the objects) and enable reuse of soft-
ware code (as is the idea of protocol itself). Up to 255 D_UnitObj objects,
each of 255 object types, can be used in each D_Unit.

- The protocol has provisions for changes and extension by use of a number
(as a header field) and a letter (as a controller property).

- Among other address modes, the protocol can use relative addressing - by
number of hops - in daisy chain configurations. This allows a very simple
address configuration by the cabling.

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 2 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp
2 Protocol Description

2.1 General

The protocol is message based. Most messages are master/slave oriented, a mas-
ter sends a request causing a response message from a slave. This is however no
restricition, the protocol also allows any units to exchange messages point to
point.

The following general size restrictions are valid for all SVIFT protocol messag-
es:.

SVIFT protocol messages normally require some form of packaging into
“frames”. That framing functionality is however deliberately left of the SVIFT
messages to make it useful on several communications media, since some of
these media lower layer protocols already have framing provisons.
The most essential functionality required by the SVIFT protocol from a framing
layer is to determine message length - the message format described here needs
message length, but has no provisions of its own to determine it. Depending on
media and application, there might also be other requirements: how to separate
from other protocols, tagging, and so on.

2.2 Special Data Types

For compression/expansion of various information, the SVIFT protocol uses ex-
pansion bits to tell the size of data fields. Two such uses have been assigned spe-
cial data types, and are described separately in the two following subchapters for
shorter notation in the rest of the document: the EBYTE data type and the DENIB
data type.

2.3 The EBYTE Data Type

The size of an EBYTE (Expanding BYTE) is minimum one byte (byte 1 of the
illustration below), and if so the lower significance 7 bits (A0,...A6) are used for
binary number representation of a parameter A. If the value of A exceeds what
can be represented by 7 bits (i.e. unsigned value above 127), the A_E1 expansion
indicator bit is set (=1) and another byte is inserted immediately after the original
byte. The new byte represents 6 more bits (A7,...A13) of A and has a new expan-

Message Parameters
MAX_SM_LEN: 32 bytes maximum allowed SVIFT message size

(unframed data).
MIN_SM_LEN: 5 bytes minimum SVIFT message size.

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 3 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp
sion indicator bit A_E2 for further expansion. Writing EBYTE(A) is short for:.

where bytes 2 and 3 only are present if so indicated by expansion indicators A_E1
and A_E2 being set. Byte numbering indicate the order in which the bytes are
sent over the interface.

The insertion of new bytes only depends on the value of A; if its value is low one
single byte might be enough, but it can be expanded to any size required. When
no more bytes are required, the expansion indicator bit of the last byte is cleared
(=0).

2.3.1 The DENIB data type

The minimum size of a DENIB (Double Expanding NIBble) is also one byte. It
is however used for representation of two values. Writing DINIB(A:B) is short
for:

where A0,A1,A2 are the three lower order bits of A (A0 identifying least signif-
icant bit, higher numbers indicating more significant bits) and B0,B1,B2 have the
corresponding meaning for the bits of B. Byte numbers 2 and 3 are extension
bytes, that are only present if the values of A and B can not be represented by the
3 bits of byte 1 (i.e. their binary value exceeds 7). The extension bytes are inserted
individually for A and B and in the order shown above if both are present. The
presence of a extension byte for A and/or B is indicated by setting individual flag
bits, A_E1 (A extended) and B_E1 (B is extended). If any of these bits are zero,
the corresponding extension byte is not present. Byte numbering indicate the
order in which the bytes are sent over the interface.

Since each of the extension bytes are EBYTE data types, they may be further ex-
panded to any value if so required.

2.3.2 The STRING data type

The string data type represents a series of bytes, terminated by a null (binary val-
ue 0) byte. Though it can be used for transfer of any data, it is typically used for
transfer of ASCII text, such as names. The terminating null byte is to be consid-

Byte MSB bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 LSB

1 A_E1 A6 A5 A4 A3 A2 A1 A0
2 A_E2 A13 A12 A11 A10 A9 A8 A7
3 A_E3 A20 A19 A18 A17 A16 A15 A14

Byte MSB bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 LSB

1 A_E1 A2 A1 A0 B_E1 B2 B1 B0
2 EBYTE(A9,..A3)
3 EBYTE(B9,..B3)

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 4 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp
ered included in the string. Writing STRING(NAME) is short for any string that
is further referred to as variable NAME. This definition is identical with use of
strings in the C programming language.

2.4 SVIFT Message Format

The format of a SVIFT message is as follows:

where data is sent in order top to bottom. All bytes down to the Data Field are
also commonly referred to as the SVIFT message “header”.

The values HPNR and the presence of optional header fields, as determined by
HFLG, is always kept unchanged from requests to responses. The only exception
from this is some of the error messages.

In trying to handle a message, the fields shall be examined in the following order:
HPNR, HFLG, ECHK (if used), DMOD, DADR, SMOD, SADR, OTYP, ON-
BR, CODE and last the SQNR (if used) field. This as a further guidance to inter-
pretation of possible error response messages.

If the value of any of the fields of a message exceeds the maximum value sup-
ported by a controller, the controller must assume that the message is destined to

Data Presence Description

DENIB(HFLG:HPNR) Mandatory HFLG: Header Flags. Descriptor of the
header format. Indicates which of the optional
fields are present.
HPNR:Header Protocol number. Used for
future expansions of the protocol. For all
SVIFT version so far, this value is always = 1.

DENIB(DMOD:DADR) Mandatory DMOD: Destination address mode.
DADR: Destination Address.

DENIB(SMOD:SADR) Mandatory SMOD: Source address Mode.
SADR: Source Address.

OTYP (one byte) Mandatory OTYP: Determines which Object Type this
command/request/response refers to.

DENIB(ONBR:CODE) Mandatory ONBR: Object Number. Distinguishes
between more than one object of the same
OTYP type. Numbering is always contiguous,
starting at zero.
CODE: Used as command code for requests
as well response code.

EBYTE(SQNR) Optional SQNR: Sequence number of a message.
Data Field Determined

by CODE
and OTYP

The contents of the data field is separately
described in chapter “Data Field”

ECHK (one byte) Optional Extra Checksum. Sum of all bytes of the
SVIFT message, except the ECHK byte itself,
truncated to 8 bits.

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 5 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp
another controller.

2.4.0.1 HFLG fields

The HFLG field is used for indication of which optional fields are present in the
header:

The value of HFLG is determined by the issuer of a message. Except for the
HFLG_REQU bit, possible response messages must have exactly the same bits
set (and the corresponding fields of the header present).

2.4.0.2 HPNR field

The only currently allowed value in this field is 1. The field is intended for future
extensions of the protocol. Since revision C of the protocol, all chain controllers
must also be able to pass messages on without complaints even if the HPNR is 2
(but not respond to them).

2.4.0.3 DMOD, DADR, SMOD and SADR fields

The destination and source D_UnitAdr’s of a message. The entire
DENIB(DMOD:DADR) and DENIB(SMOD:SADR) fields swapped in a possi-
ble response. (Exception to this is broadcast messages, see “Addressing and gen-
eral behaviour below”). Special values for DMOD, SMOD are:

Hexa
decimal
value

Name Description

0x01 HFLG_SQNR If this bit is set, a SQNR field is present in the header,
else not. The use is optional (to simplify handling of mul-
tiple concurrent requests within the issuer).

0x02 HFLG_ECHK If this bit is set, a ECHK field is present immediately
after the message data, else not. The presence of the
ECHK field forces the receiver to test it for validity. The
use is optional.

0x04 HFLG_REQU If this bit is set, the message is a request. Otherwise it is
a response.

Hexa
decimal
value

Name Description

0x00 AMOD_PHYS Physical Address Mode. Address matches if DADR =
D_UnitAdr. The message is terminated and responded
to by the unit having an address match.

0x01 AMOD_BCST Broadcast Address Mode. Address matches all units.
The message is responded to by all units, and never ter-
minated. The corresponding address field value must be
zero. May never be used as SMOD. Possible responses
always use SMOD = AMOD_PHYS.

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 6 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp

2.4.0.4 CODE field

This is the request or response code of a message. The following values are de-
fined:

The definition of each D_UnitObj describes what CODE field values can be used,
and possibly also defines its function in more detail.

0x02 AMOD_RELP Relative Physical Address Mode. When used as DMOD,
the DADR is first decremented, if it then becomes zero,
the address matches, and the unit will terminate and
then respond to the message. When used as SMOD,
the SADR value is incremented.
The incrementation or decrementation shall take place
before the contents of the message is further evaluated
- it thus affects passed on as well as responded to mes-
sages.

0x03 AMOD_RELB Relative Broadcast Mode. When used as DMOD, the
DADR value is first decremented, if it then becomes
zero the message is terminated. The message is
responded to by all units. May never be used as SMOD.
Possible responses use SMOD = AMOD_RELP.

Hexa
decimal
value

Name Description

Request/Response type (request is even, response is odd).
0x00 CODE_Read Read a D_UnitObj. Always causes a response message

to be sent (CODE_Read or CODE_Err).
0x01 CODE_Write Write to a D_UnitObj. Always causes a response mes-

sage to be sent (CODE_Write or CODE_Err).
0x02 CODE_Start Start or enable a D_UnitObj function.
0x03 CODE_Stop Stop or disable a D_UnitObj function
0x04
0x05
0x06 CODE_Name Get the name of a D_UnitObj. Always causes a

response to be sent (CODE_Name or CODE_Err)
0x07 CODE_Err Error. If the message is a response, it indicates that a

request was not carried out due to errors. The contents
of this message indicates the kind of error.

0x08 CODE_Echo Echo back the message data field
0x09 CODE_Info The message is for information.
0x0a CODE_Clear Clear a D_UnitObj function. The exact meaning of this

command is described together with each D_UnitObj
object type.

Hexa
decimal
value

Name Description

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 7 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp
2.4.0.5 OTYP field

This is the D_UnitObj type of object that the CODE request or response refers to.
Defined OTYP values are listed together with their associated CODE val-
ues and data fields in chapter “D_UnitObj types” below.

2.4.0.6 ONBR field

This field identifies which, of possibly many, objects of the same OTYP object
type that the CODE request/response code refers to. Objects are always num-
bered contiguously (without left out numbers) from zero upwards. Thus, if only
one object of a certain OTYP type exist in the equipment, its ONBR number is
zero.

2.4.1 Addressing and General Behaviour of Equipment

Star controller
A star controller, acts upon a message if DADR matches any of the addresses of
the connected PIUs. If the destination address does not match, the message is
dropped without errors. A broadcast message will affect (and cause possible re-
sponses for) all connected PIUs. Possible responses are sent back via the normal
interface.

Chain Controller
In this type of equipment, if DADR does not match, the message is passed on via
the other interface (i.e. not the interface where the message arrived). Possible re-
sponses are always sent back to the interface where the request message arrived.
This means a message will be forwarded to the correct PIU via a number of other
PIUs and a possible response will be sent back via the same path of PIUs in the
opposite direction. A broadcast message is as well parsed as passed on. Messages
sent to unused addresses, and also broadcast addressed messages, will thus reach
the other end of the daisy-chain of PIUs and the there (possibly) connected gate-
way.
The use of the SADR field of the protocol header allows any PIU to communicate
to any other PIU without gateway assistance.
A chain controller is capable of handling relative address modes.

Gateway
A gateway only parses messages that is expects as response to sent out requests,
and the possible error messages that may appear instead of responses. This means
a gateway is insensitive to messages that reach it by mistake (due to bad address-
ing).

2.4.2 Data Field

The format of the data field for most messages is described together with the de-
scription of the object types, see chapter “Object Types” for further information.
This chapter therefore only describes general message types that are not referred

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 8 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp
to any object type in particular.

2.4.3 General Messages

2.4.3.1 Error Message

Error messages are sent as response to incoming requests in case of errors. The
error message always returns the same header HFLG, HPNR, OTYP and ONBR
values as the request. Exceptions to this rule are:

- Extra checksum is never used in error messages. If the HFLG_ECHK bit was
set in the request that caused the error message, it is cleared in the response
(and the EBYTE(SQNR) field is removed).

- The Err_BadHflg and Err_BadHpnr errors also cause header information to
change, see description below.

The error message data field format is:

The following ERRNR error codes are have general use, they may appear with
any object type. Testing for these errors is mandatory. Testing for errors
Err_BadHflg and Err_BadHpnr is performed on all messages, while testing for
other error numbers only is performed by the addressee :

Data (one byte each) Description

RCODE The header CODE value of the message that caused
the error/failure.

ERRNR A pre-defined value according to the table below.
(NOTE: ERRNR deals with message format errors, not
to mix with ERRNO which deals with controller func-
tional failures.)

Hexa
decimal
value

Name Description

0x00 Err_BadHflg The equipment does not support this HFLG value.
This error message is always given with HFLG =
HPNR = OTYP = ONBR = 0, and the incoming
HFLG value as data field RCODE value.

0x01 Err_BadHpnr The equipment does not support this HPNR value.
This error message is always sent with HFLG =
HPNR = OTYP = ONBR = 0, and the incoming
HPNR value as data field RCODE value.

0x03 Err_BadEchk The extra checksum ECHK was incorrect
0x10 Err_BadObjType The addressed object type is not used in this kind of

equipment, or does not exist.
0x11 Err_BadObjNr The object number is out of range for the addressed

type of equipment.
0x12 Err_BadCode The CODE value is not valid for this object type.

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 9 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp

The following ERRNR error codes can only appear with a certain object type if
so mentioned in its description, which may also further define its meaning:

2.4.3.2 Name Messages

All D_UnitObj objects have names, which can be read by the CODE_Name mes-
sages. Names are represented by ASCII strings of length 0 - DMAXNAMLEN
plus a terminating null byte. DMAXNAMLEN is equal to 16 bytes for the current
version of the protocol.

The D_UnitObj objects that use individual bits (OTYP_ROFLB,
OTYP_EVFLB) and states (OTYP_4STCTL, OTYP_NSTCTL) also have
names for each individual bit and state. CODE_Info is used to read these names.

For message formats, see the description of each object type in chapter 3.

Routines that use names in order to recognise objects should always convert
names to all upper case letters and remove blanks (hex 0x20) before comparison
to the expected string. It is also recommended not to use blanks in names.

2.5 Alarms

The SVIFT protocol supports alarms to be handled by use of OTYP_ROFLB and
OTYP_EVFLB objects. Conditions that mean problems in most applications of
the D_Unit should use these objects types and have the corresponding AMASK
and BMASK values designed according to the classification in chapter 2.5.1. The
instance and bit names should be chosen to give the best possible guidance to any
operator of the nature of the problem. Specific applications of the D_Unit may

0x20 Err_BadData The size of the data field, as calculated from
W_LENGTH minus header size, is not correct for
this OTYP object type and CODE request code.

0x21 Err_BadResp The request would cause a response that exceeds
the maximum allowed by the protocol.

Hexa
decimal
value

Name Description

0x30 Err_BadRange Any of the Data Field parameters is out of range
0x31 Err_ReqFail The request was not successfully carried out.
0x32 Err_Blocked The requested functionality is blocked by a protec-

tion mecahnism
0x33 Err_Param One of the parameters is wrong from some respect

(also see Err_BadRange). Example of use is bad
password.

Hexa
decimal
value

Name Description

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 10 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp
override the AMASK and BMASK values or even supervise other objects types
if so required.

If OTYP_GROUP objects are used, OTYP_ROFLB and OTYP_EVFLB objects
contained in these GROUPs must have their alarm bits duplicated also to a bit of
a central (non-group contained) ROFLB or EVFLB. In other words, a supervisor
should not need to read a GROUP structure to find any possible alarms - any bits
in these GROUP contained objects should only be used for finer resolution of the
problem. The most obvious reason for this rule is backward compatibility, super-
vision equipment designed from revision A or B of this specification have no
knowledge of OTYP_GROUP. GROUP contained ROFLBs or EVFLBs may
still use non-zero AMASK and BMASK values to provide further guidance the
origin of the problem.

2.5.1 Alarm Classification

Flag oriented objects also contain information on recommendations whether the
flag should be considered an alarm or not. There also two different alarm priori-
ties defined. These general meaning of these alarm priorities are as follows:

A - alarm: Failures of this category require immediate attention.
B - alarm: Failures of this category can be corrected at the next regular service.
Flags belonging to neither the A or B category are for information only. They

may be used freely for other purposes.

This classification is recommendation only, since severity of failures may depend
on the application. It should be described by the product documentation, so the
user can determine whether his classification agrees, or if overrides have to be
made.

2.6 Standard Attributes

The following objects are recommended to be implemented by all SVIFT prod-
ucts:

Attribute Recommendation

ProductIndividualData Should be implemented as OTYP_NVSTR with:
ONBR=0,
NAME=“ProdIndivData” (exactly spelled).
TOTSIZ=100
The first byte of the string determines the length of the
ProductIndividualData read by other protocols, bytes fol-
lowing contain the actual ProductIndividualData string.

Front Panel “MIA” LED Should be implemented as OTYP_4STCTL with:
ONBR=0
NAME=”StdLED”
state names: 0=”Off”, 1=”SlowFlash”, 2=”FasFlash”,
3=”On”

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 11 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp

2.7 Controllers

2.7.1 General Behaviour of D_Iface Controllers

A message is acted upon by the receiving equipment if its destination address
(header DADR field) matches its D_UnitAdr. The contents of the DADR and
SADR fields are swapped in a response (so DADR is the destination, and SADR
is the source of the response).
Address value DADR_BCST (meaning broadcast message) is never used in a re-
sponse, it is instead replaced by D_UnitAdr of the responding unit

A Gateway sends out the request messages it needs to fulfil its function as a
bridge to other interfaces (the Maintenance Channel Level1), and only cares
about the incoming messages that are relevant responses to those. The only ex-
ception to this general behaviour is that it also responds to messages concerning
its OTYP_CONTR D_UnitObj. The gateway never issues any Error Messages
concerning response messages or messages concerning other than its
OTYP_CONTR D_UnitObj.

A Star Controller responds to requests to the D_UnitAdr address range that are
present in a full configuration (normally full configured subrack) and broadcast
messages. If a PIU is not mounted, it responds using the proper Error Message.
Requests to DADR values that are never present (even in a full configuration) are
discarded.

A Chain Controller only responds to the D_UnitAdr address of the PIU it is itself
located on, and the broadcast address. For other values of the DADR field of in-
coming messages, it passes the message on to its other D_Iface (i.e. not the
D_Iface where the message arrived). Responses are sent back to the same inter-
face where the message arrived, and are not passed on. Broadcast messages are
as well responded to as passed on.

Using these transfer mechanisms, the Gateway sees very little difference if the
D_Iface connected equipment uses a Star Controller or a Chain Controller.

Front Panel Push Button
(if present)

Should be implemented as OTYP_EVFLB with:
ONBR=0
bit MASK=1
bit NAME=”StdPB”
The instance name of the EVFLB may be freely chosen.

Attribute Recommendation

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 12 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp
3 D_UnitObj Types

The following subchapters are detailed descriptions of the defined D_UnitObj
types and their associated CODE values and data fields. The following table
shows the OTYP numbers assigned to the types and gives an overview of the
functionality:

MOTY
value
(HEX)

Name Description

0x00 OTYP_CONTR The D_Iface controller itself. This object handles parameters that are
common to all object types or no object type in particular.

0x01 OTYP_NVSTR A Read/Write non-volatile string of bytes.
0x02 OTYP_EVFLB A byte of event flags.
0x03 OTYP_ROFLB A read only flag byte.
0x04 OTYP_4STCTL A four state control.
0x05 OTYP_8ROSAN A read only 8-bit signed analogue value, using scale factor
0x06 OTYP_8ROSBN A read only 8-bit signed binary value
0x07 OTYP_NSTCTL A general state control (any number of states).
0x08 OTYP_GROUP A grouping of other objects
0x09 OTYP_OUTB A byte of output bits.
0x7f OTYP_CONF A configuration object.
0x80 OTYP_FINFO1 A fan controller general info object.
0x81 OTYP_FINFO2 A fan controller object for general override

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 13 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp
3.1 Object OTYP_CONTR

This D_IfaceObj represents the controller of the D_Iface itself. Its implementa-
tion is mandatory but its use is optional. It may be used by the master to optimize
its strategy, and to test the D_Iface.

The object supports the following header CODE values:

CODE_Read

Function: Read Controller General Parameters

Data (one byte each
unless otherwise

specified)
Description

Request:
(no data)
Response:
TYPE TYPE:The controller type 0=Supervisor, 1 = Chain Con-

troller
PREV PREV: The ASCII representation highest revision of this

protocol (revsion of this document) that the controller
supports. Since revision D is the currenlty latest revi-
sion, PREV = 0x44 for new designs (but may also be
0x41,0x42 or 0x43 for older designs.

ERRNO The last internal error type that occurred within the con-
troller. (NOTE: ERRNO deals with controller functional
failures, do not mix with ERRNR that deals with mes-
sage signalling errors.) For recommendations on
ERRNO coding, see chapter 3.1.1

SEQ The sequence number of the ERRNO. It is incremented
each time the controller updates ERRNO and can there-
fore be used to determine whether more errors of the
same type are occurring. SEQ is never initialized, only
incremented by the controller software. The value at
power up of the controller is undefined (hardware
dependent).

EPROT (optional) A optional sequence of pairs of EPROT, EPREV, speci-
fying other protocol levels (header HPNR values) and
highest revisions (similar to PREV above) that the con-
troller supports. EPROT is a binary value, EPREV is a
ASCII letter.

EPREV (optional)

....

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 14 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp

3.1.1 Recommended ERRNO values

The following codes are recommended for ERRNO at various failures. There is
no requirement that all these must be implemented. It is also allowed to add new
codes as needed. If they are of more general nature, please notify the author so
they can possibly be added as recommendations in future revisions of this docu-

CODE_Info

Function: Read Controller Functionality

Data(one byte each
unless otherwise

specified)
Description

Request:
(no data)
Response:
NUM A repeated sequence of byte pairs NUM, OTYP that the

controller will respond to, where OTYP is the defined
object type and NUM is the number of such objects. The
last pair of bytes has NUM = 0 and any OTYP value.

OTYP
...

CODE_Echo

Function: Echo data field

Data Description

Request:
(any data) The number of bytes is determined from the message

size.
Response:
(same as request)

CODE_Name

Function: Read CONTR instance name

Data field (one byte
each unless otherwise

specified)
Description

Request:
(no data)
Response:
STRING(INSTNAME) The name of this CONTR object instance.

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 15 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp
ment.

Name Value
(hex) Description

Startup/Reset
EPWRON 0x00 A normal startup (reset). If power up can be detected, it

was the reason of the startup.
EFRESET 0x01 A failure caused a reset/restart. The type of failure could

be any that is detected by the controller, for example:
watchdog timeout, illegal opcode trap.

Heap oriented failures
EBADHEAP 0x10 Heap was corrupted (but reinitialised).
EBADFREE 0x11 A free() call using invald pointer was issued.
ENOHEAP 0x12 A malloc (or similar) call was not successful due to heap

limitations.
Signalling related failures:
EOSIGOVF 0x20 Output overflow. This situation may occur when a mas-

ter issues requests, that cause long response mes-
sages, too rapidly. The problem might be either total
output buffer size or limitations in the number of outgo-
ing messages.

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 16 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp
3.1.1.1 Object OTYP_NVSTR

The NVSTR object type represents a size TOTSIZ non-volatile string, typically
stored in EEPROM, which can be read and written. The total size of the string
may for example be determined by issuing a CODE_Read with STARTP = NUM
= 0, which will never fail (see below).

The object supports the following header CODE values:

CODE_Read

Function: Read OTYP_NVSTR data

Data (one byte each
unless otherwise

specified)
Description

Request:
STARTP The starting byte position, range 0,...,TOTSIZ-1.

Err_BadRange will be returned if STARTPOS is outside
this range.

NUM NUM: The number of bytes to read.
Response:
TOTSIZ The total size of NVSTR in bytes
STARTP The starting byte position of the returned data.
NUM The number of NVSTR data bytes returned (may be

truncated if part of the requested NUM bytes are outside
TOTSIZ).

(num bytes of data) The NVSTR data

CODE_Write

Function: Write NVSTR data

Data (one byte each
unless otherwise

specified)
Description

Request:
STARTP The starting byte position, range 0,...,TOTSIZ-1.

Err_BadRange will be returned if STARTPOS is outside
this range.

NUM The number of bytes to write. Err_BadRange will be
returned and nothing written if part of the data is outside
0,...,TOTSIZ-1.

(NUM bytes of data)
Response:
STARTP The starting byte position of the returned data.
NUM The number of NVSTR data bytes written.

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 17 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp

Note that the maximum SVIFT message size, MAX_SM_LEN, also limits NUM
to 16..25 depending on header parameter values. It is therefore not recommended
to use NUM > 16.

CODE_Name

Function: Read NVSTR instance name

Data field (one byte
each unless otherwise

specified)
Description

Request:
(no data)
Response:
STRING(INSTNAME) The name of this NVSTR object instance.

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 18 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp
3.1.1.2 Object OTYP_EVFLB

This object represents a byte of event flags, where each bit position represents a
event flag. The flag FLAG is cleared (=0) until the associated event occurs, but
then gets set (=1). The flag may be read, cleared, disabled (which implies a clear)
or enabled. At least one of the bits have this functionality implemented. Unused
flag bits always report disabled status. Enabling or disabling of unused bits will
cause no error.

No error messages are returned for redundant requests (for example to disable an
already disabled OTYP_EVFLAG).

The state at power up of the controller is disabled (STAT = 0) and cleared (FLAG
= 0).

The object supports the following CODE values::

CODE_Read

Function: Read EVFLB flags and status

Data (one byte each
unless otherwise

specified)
Description

Request:
(no data)
Response:
STAT (one byte) Status (0=Disabled, 1=Enabled) for each of the flag bits.
FLAG (one byte) Event flag (0=not occurred, 1=has occurred) for each of

the flag bits.
AMASK (one byte) Mask for what bits in FLAG are recommended to be

treated as level A failure alarms (see chapter 2.5).
BMASK (one byte) Mask for what bits in FLAG are recommended to be

treated as level B failure alarms. (see chapter 2.5)

CODE_Start (enable), CODE_Stop (disable), CODE_Clear

Function: Enable, Disable (implies Clear) or Clear one or more flag bits

Data (one byte each
unless otherwise

specified)
Description

Request:
BITS Performes Enable, Disable or Clear of the flag bits set in

BITS.
Response:
BITS Same as BITS of the request, but with non implemented

bit positions cleared.

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 19 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp

The following form of CODE_name is also supported, but not recommended (use
CODE_Info instead):

CODE_Name

Function: Read EVFLB instance name

Data field (one byte
each unless otherwise

specified)
Description

Request:
(no data)
Response:
STRING(INSTNAME) The name of this EVFLB object instance.

CODE_Info

Function: Read EVFLB bit name(s)

Data field (one byte
each unless otherwise

specified)
Description

Request:
MASK MASK uses the same bit positions as the flag byte.

Each bit set in MASK requests the name of the corre-
sponding bit. This means 0 to eight names can be
requested by the same message. It is up to the request-
ing part not to ask for more names than will fit into one
response message.

Response:
MASK
STRING(NAME1) 0 to 8 names corresponding to the bits set in MASK.
STRING(NAME2)
...

CODE_Name

Function: Read EVFLB bit name(s)

Data field (one byte
each unless otherwise

specified)
Description

Same request and Response formats as CODE_INfo described above

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 20 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp
3.1.1.3 Object OTYP_ROFLB

This object represents a byte of condition flags, where each bit position repre-
sents one flag. The respective flag bit is set (=1) if the condition is true, else
cleared (=0). The flag byte may be read only. At least one of the bits have this
functionality implemented. Unused flag bits always report cleared status.

The object supports the following CODE values (also see chapter 2.4.3 descrip-
tion on bit names):,.

CODE_Read

Function: Read ROFLB flags and status

Data (one byte each
unless otherwise

specified)
Description

Request:
(no data)
Response:
FLAG Condition flag (0=not true, 1=true) for each of the flag

bits.
AMASK Mask for what bits in FLAG are recommended to be

treated as level A failure alarms (see chapter 2.5).
BMASK Mask for what bits in FLAG are recommended to be

treated as level A failure alarms (see chapter 2.5).

CODE_Name

Function: Read ROFLB instance name

Data field (one byte
each unless otherwise

specified)
Description

Request:
(no data)
Response:
STRING(INSTNAME) The name of this ROFLB object instance.

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 21 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp

The following form of CODE_name is also supported, but not recommended (use
CODE_Info instead):

CODE_Info

Function: Read ROFLB bit name(s)

Data field (one byte
each unless otherwise

specified)
Description

Request:
MASK MASK uses the same bit positions as the flag byte.

Each bit set in MASK requests the name of the corre-
sponding bit. This means 0 to eight names can be
requested by the same message. It is up to the request-
ing part not to ask for more names than will fit into one
response message.

Response:
MASK
STRING(NAME1) 0 to 8 names corresponding to the bits set in MASK.
STRING(NAME2)
...

CODE_Name

Function: Read ROFLB bit name(s)

Data field (one byte
each unless otherwise

specified)
Description

Same request and Response formats as CODE_INfo described above

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 22 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp
3.1.1.4 Object OTYP_4STCTL

The 4STCTL object type represents a four state indicator of any kind. What func-
tionality the four states represent must be described by product documentation.

The object supports the following header CODE values:

CODE_Read

Function: Read 4STCTL state

Data field (one byte
each unless otherwise

specified)
Description

Request:
(no data)
Response:
STATE The 4STIND present state. (0, 1, 2 or 3)

CODE_Write

Function: Write 4STCTL state

Data field (one byte
each unless otherwise

specified)
Description

Request:
STATE Requested new state of the 4STIND. (0, 1, 2 or 3). Other

values will cause a Err_BadRange.
Response:
STATE Same as request

CODE_Name

Function: Read 4STCTL instance name

Data field (one byte
each unless otherwise

specified)
Description

Request:
(no data)
Response:
STRING(INSTNAME) The name of this 4STCTL object instance.

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 23 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp

The following form of CODE_name is also supported, but not recommended (use
CODE_Info instead):

The following error responses have special interpretation for this object type:
Err_BadRange - STATE was outside the allowed range (0,...4).

CODE_Info

Function: Read 4STCTL state name

Data field (one byte
each unless otherwise

specified)
Description

Request:
STATE
Response:
STATE
STRING(STATENAME) The name of the state STATE

CODE_Name

Function: Read 4STCTL state name

Data field (one byte
each unless otherwise

specified)
Description

Request and response formats same as described for CODE_Info above

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 24 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp
3.1.1.5 Object OTYP_8ROSAN

The 8ROSAN object type represents a read only 8bit signed analog value, using
2’s complement negative value representation. What parameter the value repre-
sents must be described by product documentation.
The object supports the following header CODE values:

CODE_Read

Function: Read 8ROSAN value

Data field (one byte
each unless otherwise

specified)
Description

Request:
(no data)
Response:
VALUE The value (signed integer)
MULT VALUE must be multiplied by this value before use

(unsigned integer).
DIVI VALUE must be divided by this value before use

(unsigned integer).
EXP VALUE must be multiplied by 10EXP before use (signed

integer).
TYPE The type of value:

1= Voltage in Volts
2= Current in Amperes
3= Temperature in Centigrades

CODE_Name

Function: Read 8ROSAN instance name

Data field (one byte
each unless otherwise

specified)
Description

Request:
(no data)
Response:
STRING(INSTNAME) The name of this 8ROSAN object instance.

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 25 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp
3.1.1.6 Object OTYP_8ROSBN

This object represents a binary value, that may be read only.

The object supports the following CODE values:,.

CODE_Read

Function: Read 8ROSBN value

Data field (one byte
each unless otherwise

specified)
Description

Request:
(no data)
Response:
VALUE The value, represented as a 8-bit signed (2’s comple-

ment if negative) binary number

CODE_Name

Function: Read 8ROSBN instance name

Data field (one byte
each unless otherwise

specified)
Description

Request:
(no data)
Response:
STRING(INSTNAME) The name of this 8ROSBN object instance.

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 26 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp
3.1.1.7 Object OTYP_NSTCTL

The NSTCTL object type represents a state indicator/control of any kind. The
number of states is defined by each instance separately. What functionality the
various states represent must be described by product documentation.

The object supports the following header CODE values:

CODE_Read

Function: Read NSTCTL state

Data field (one byte
each unless otherwise

specified)
Description

Request:
(no data)
Response:
NUMSTATES The number of states
STATE The current state (0,..,(NUMSTATES-1))

CODE_Write

Function: Write NSTCTL state

Data field (one byte
each unless otherwise

specified)
Description

Request:
STATE Requested new state. (0,..,(NUMSTATES-1)).
Response:
STATE Same as request

CODE_Name

Function: Read NSTCTL instance name

Data field (one byte
each unless otherwise

specified)
Description

Request:
(no data)
Response:
STRING(INSTNAME) The name of this NSTCTL object instance.

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 27 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp

The following form of CODE_name is also supported, but not recommended (use
CODE_Info instead):

The following error responses have special interpretation for this object type:
Err_BadRange - STATE was outside the allowed range (0,...(NUM-

STATES-1)).

CODE_Info

Function: Read NSTCTL state name

Data field (one byte
each unless otherwise

specified)
Description

Request:
STATE
Response:
STATE
STRING(STATENAME) The name of the state STATE

CODE_Name

Function: Read NSTCTL state name

Data field (one byte
each unless otherwise

specified)
Description

Request and response formats same as described for CODE_Info above

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 28 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp
3.1.1.8 Object OTYP_GROUP

The GROUP object type does not represent any functionality by its own, but is
rather to be considered a named container of other objects. It is typically used to
represent any (repeated) sub-function within the D_Unit. GROUP objects can be
contained in other GROUP objects, thus creating a multi level nested hierarchy
limited only by message size. Object numbering is started from zero in each
GROUP.

For handling of alarms from objects contained in GROUPs, see recommenda-
tions in chapter XXX.

The OTYP_GROUP object itself responds to the following two commands only,
providing no data is present in the request::

CODE_Name

Function: Read GROUP instance name

Data field (one byte
each unless otherwise

specified)
Description

Request:
(no data)
Response:
STRING(INSTNAME) The name of this GROUP instance.

CODE_Info

Function: Read GROUP instance name

Data field (one byte
each unless otherwise

specified)
Description

Request:
(no data)
Response:
NUM A repeated sequence of byte pairs NUM, OTYP that the

controller will respond to, where OTYP is the defined
object type and NUM is the number of such objects. The
last pair of bytes has NUM = 0 and any OTYP value.

OTYP
...

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 29 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp

The following error responses have special interpretation for this object type:
Err_BadData - The DATA field could not be interpreted as an EBYTE(),

DENIB() combination (any CODE value), and was not zero length with a
CODE_Name or CODE_Info request.

Err_BadObjType - The GROUP does not contain any S_OTYP objects.
Err_BadObjNr - The GROUP does not contain any S_OTYP object having

number S_ONBR.

CODE_Start

Function: Pass request/response message to/from a contained object

Data field (one byte
each unless otherwise

specified)
Description

Request:
EBYTE(S_OTYP) The OTYP of the contained object
DENIB(S_ONBR:S_CODE
)

The ONBR of the contained object and the CODE to
pass on to the OTYP, ONBR object.

data The DATA field to pass on to the contained object, for-
mat according specifications for that object type. (length
>= 0)

Response:
EBYTE(OTYP) Copied from request
DENIB(ONBR:CODE) Copied from request.
data The response DATA field returned from to the contained

object, format according specifications for that object
type (length >= 0).

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 30 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp
3.1.1.9 Object OTYP_OUTB

This object represents a byte of controllable bits. Typical application is ON/OFF
control of functionality or digital output pins. Functionality and naming of indi-
vidual bits should be chosen so that a 1 represents ON or true condition, and a 0
represents OFF or false. The flag byte may be written and read. All bits are
cleared at start-up. At least one of the bits have this functionality implemented.
Unused flag bits always report cleared status.

The object supports the following CODE values (also see chapter 2.4.3 descrip-
tion on bit names):,.

CODE_Read

Function: Read all OUTB bits

Data (one byte each
unless otherwise

specified)
Description

Request:
(no data)
Response:
BITS The present state of all bits.
MASK Mask for what bits in BITS are actually implemented/

used.

CODE_Start

Function: Set (to 1) selected OUTB bits

Data (one byte each
unless otherwise

specified)
Description

Request:
MASK Mask for what bits are to be set.
Response:
MASK Same value as request.

CODE_Stop

Function: Clear (to 0) selected OUTB bits

Data (one byte each
unless otherwise

specified)
Description

Request:
MASK Mask for what bits are to be cleared.
Response:
MASK Same value as request.

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 31 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp
CODE_Name

Function: Read ROFLB instance name

Data field (one byte
each unless otherwise

specified)
Description

Request:
(no data)
Response:
STRING(INSTNAME) The name of this OUTB object instance.

CODE_Info

Function: Read ROFLB bit name(s)

Data field (one byte
each unless otherwise

specified)
Description

Request:
MASK MASK uses the same bit positions as the flag byte.

Each bit set in MASK requests the name of the corre-
sponding bit. This means 0 to eight names can be
requested by the same message. It is up to the request-
ing part not to ask for more names than will fit into one
response message.

Response:
MASK Same as request, but unimplemented bits have been

removed.
STRING(NAME1) 0 to 8 names corresponding to the bits set in MASK.
STRING(NAME2)
...

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 32 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp
3.1.1.10 Object OTYP_CONF

CONF object is similar to the NVSTR object type in that it represents a series of
bytes that can be read and written non-volatile memory. Objects of CONF type
should however not be announced by the controller (in its response to
CODE_Info). This since they are not to be considered “run time” - any changes
made to the CONF object are not guaranteed to take full action until after the next
reset of the unit.
I addition to the NVSTR object type, CONF also has a protection mechanism by
use of password. This functionality is handled by the CODE_Start, CODE_Stop
and CODE_Info command codes.
The format/usage of the contents of the CONF object is completely defined by
each product.

The object supports the following header CODE values:

CODE_Read

Function: Read OTYP_CONF data

Data (one byte each
unless otherwise

specified)
Description

Request:
STARTP The starting byte position, range 0,...,TOTSIZ-1.

Err_BadRange will be returned if STARTPOS is outside
this range.

NUM NUM: The number of bytes to read.
Response:
TOTSIZ The total size of CONF in bytes
STARTP The starting byte position of the returned data.
NUM The number of CONF data bytes returned (may be trun-

cated if part of the requested NUM bytes are outside
TOTSIZ).

(num bytes of data) The CONF data

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 33 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp
CODE_Write

Function: Write CONF data - see also “Note:” below

Data (one byte each
unless otherwise

specified)
Description

Request:
STARTP The starting byte position, range 0,...,TOTSIZ-1.

Err_BadRange will be returned if STARTPOS is outside
this range.

NUM The number of bytes to write. Err_BadRange will be
returned and nothing written if part of the data is outside
0,...,TOTSIZ-1.

(NUM bytes of data)
Response:
STARTP The starting byte position of the returned data.
NUM The number of CONF data bytes written.

CODE_Name

Function: Read CONF instance name

Data field (one byte
each unless otherwise

specified)
Description

Request:
(no data)
Response:
STRING(INSTNAME) The name of this CONF object instance. Normally this is

“conf”.

CODE_Start

Function: Start CONF data protection

Data (one byte each
unless otherwise

specified)
Description

Request:
PASSW (1-10 bytes) Arbitrary password data (normally, but not limited to

ASCII).
Response:
(no data)

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 34 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp

Note: The CODE_Write messages also has special interpretations. These occur
if STARTP=0, NUM=0 and one byte of data is passed (conflicts with normal in-
terpretation). In these cases, the data passed is used as a command code with the
following effect:

data = 0: “Set default” - sets entire CONF object to its default values.
data = 1: “Update checksum” - updates CONF internal checksum. This com-

mand must be executed after all changes to CONF (CODE_write,
CODE_Start or CODE_STOP). If not, the CONF automatically reverts to
its default settings at next reset.

When CONF protection is activated (after successful CODE_Start), the
CODE_Read, CODE_Write and CODE_Start are all disabled and will result in
error code Err_Blocked.

Note that the maximum SVIFT message size, MAX_SM_LEN, also limits NUM
to 16..25 depending on header parameter values. It is therefore not recommended
to use NUM > 16.

CODE_Stop

Function: Remove CONF data protection

Data (one byte each
unless otherwise

specified)
Description

Request:
PASSW (1-10 bytes) Arbitrary password data. Removes data protection if

identical to PASSW used with CODE_Start.
Response:
(no data) If successful - otherwise Err_ParFail

CODE_Info

Function: Remove CONF data protection

Data (one byte each
unless otherwise

specified)
Description

Request:
(no data)
Response:
TOTSIZ The total size of the CONF data
BLOCKED 1 if data protection is active, 0 otherwise

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 35 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp
3.1.1.11 Object OTYP_FINFO1

This object represents a highly specialised functionality implemented in fan con-
trollers. Its purpose is to transmit and receive status and temperature information
from other fan controllers that it is configured to cooperate with. Each fan con-
troller maintains a table of this information from the cooperating controllers and
controls its fan motor based on received information as well as on absence of
such. The message format is described here for information only, it is not intend-
ed to be used (transmitted from or interpreted by) other types of equipment. Un-
like most other objects, it does not respond to CODE_Read or CODE_Name
messages.

The object supports the following CODE values:,.

CODE_Info

Function: Inform on FINFO1 status and temperature

Data field (one byte
each unless otherwise

specified)
Description

Request (no response)
APHYS The physical address of the unit sending the message.
TEMP Signed (2’s complement) temperature in centigrades.
FLAGS1 Failure flag bits

Mats Barkell

SVIFT Protocol Message Format

Rev E

2003-10-27

Page 36 of 36

telamp03/104_e.fm

Telamp
Tomtebogatan 26A
113 38 Stockhom

Telefon
08/301992

Org.nr.
480721-7015

Telamp
3.1.1.12 Object OTYP_FINFO2

This object represents an optional functionality for fan controllers - and enables
a more general means of achieving similar functionality as the OTYP_FINFO1
object. Its purpose is to receive requests to run at full speed or to run at a speed
corresponding to higher than actual temperature. Each such received message has
a life time of 15seconds and its TEMP value is stored in a table that can contain
minimum 5 messages during this lifetime. The worst combination of TEMP val-
ues from this table, and from the fan controller’s own temperature and failure
flags, controls the fan speed.

The storage into the described table is optimised to save space by:
- never storing entries that do not have higher TEMP than the controller itself.
- overwriting entries that have same or lower TEMP, but lower remaining life-

time.

Using OTYP_FINFO2, multiple fan units can be setup to “cooperate” in various
patterns: to run according to the highest temperature seen by a group of fans or
other measured temperature, or to run at full speed when another fan unit is miss-
ing or faulty. This cooperation is very flexible, but requires (as opposed to
OTYP_FINF1) implementation outside the fan unit itself - should be easy to im-
plement in the supervision equipment.

Unlike most other objects, OTYP_FINFO2 does not respond to CODE_Read or
CODE_Name messages.

The object supports the following CODE values:,.

The following error responses have special interpretation for this object type:
Err_ReqFail - The storage into the above described table was not successful

(no space), the request should be repeated.

CODE_Write

Function: Inform on FINFO status and temperature

Data field (one byte
each unless otherwise

specified)
Description

Request:
TEMP Signed (2’s complement) temperature in centigrades.

Requests the receiver to run at speed corresponding to
this or higher temperature. The value 127 (0x7f) is inter-
preted as “go maximum speed” - independent from reg-
ulation curves.

Response:
TEMP Copied from request

